1. NO(g), $H_2(g)$, $N_2(g)$ and $H_2O(g)$ exist in equilibrium:

$$2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$$

At room temperature and pressure, the equilibrium lies well to the right-hand side.

Which of the following could be the equilibrium constant for this equilibrium?

- A $1.54 \times 10^{-3} \text{ mol dm}^{-3}$
- **B** $6.50 \times 10^2 \, \text{mol dm}^{-3}$
- C $1.54 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1}$
- **D** $6.50 \times 10^2 \, \text{dm}^3 \, \text{mol}^{-1}$

Your answer	Your	answer		
-------------	------	--------	--	--

[1]

2. Two students set up the equilibrium system below.

$$CH_3COOC_2H_5(1) + H_2O(1) \rightleftharpoons C_2H_5OH(1) + CH_3COOH(1)$$

The students titrated samples of the equilibrium mixture with sodium hydroxide, NaOH(aq), to determine the concentration of CH₃COOH.

The students used their results to calculate a value for K_c .

The students' values for K_c were different.

Which of the reason(s) below could explain why the calculated values for K_c were different?

- 1: Each student carried out their experiment at a different temperature.
- 2: Each student used a different concentration of NaOH(aq) in their titration.
- 3: Each student titrated a different volume of the equilibrium mixture.
- **A** 1, 2 and 3
- **B** Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer

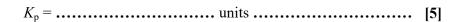
[1]

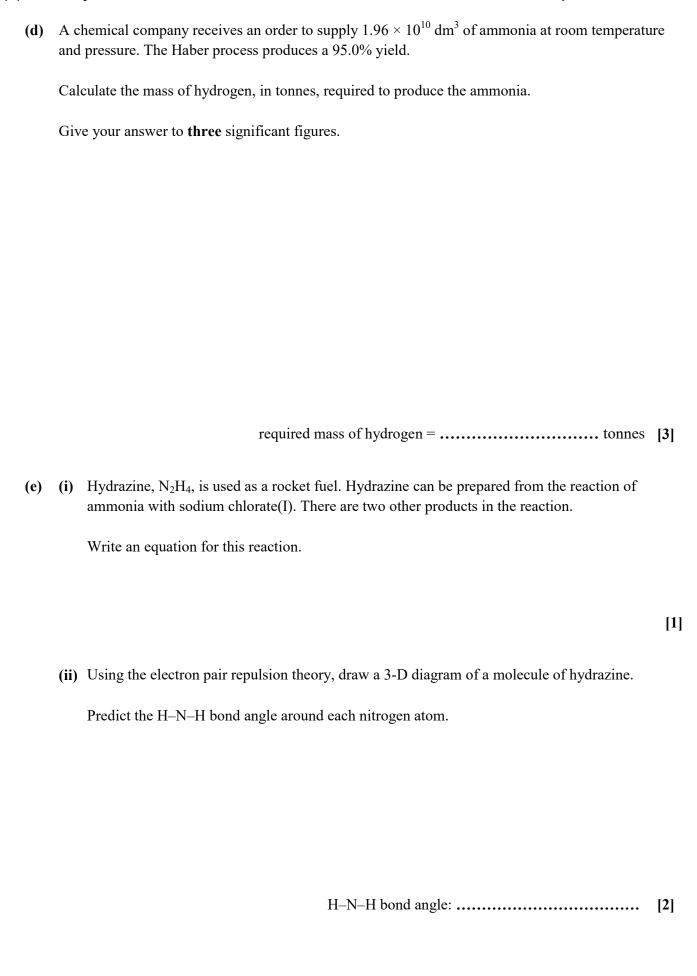
© OCR 2014 H432/01

3.	Amı	monia is a gas with covalently-bonded molecules consisting of nitrogen and hydrogen atoms.	
	(a)	Show the electron configuration of a nitrogen atom using 'electron-in-box' diagrams.	
		Label each sub-shell.	
		1s	
			[2]
	(b)	Ammonia can be made from the reaction of nitrogen and hydrogen in the Haber process.	
		$N_2(g) + 3H_2(g)$ Fe catalyst $2NH_3(g)$ $\Delta H = -92 \text{ kJ mol}^{-1}$ Equation 1	
		What effect will increasing the temperature have on the composition of the equilibrium mixture as on the value of the equilibrium constant?	ınd
		Explain your answer.	
			· • •
			•••
			•••
			[2]

© OCR 2014 H432/01

(c) A chemist mixes together 0.450 mol	N_2 with 0.450 mol H_2 in a sealed container.
--	---


The mixture is heated and allowed to reach equilibrium.


At equilibrium, the mixture contains $0.400 \ mol \ N_2$ and the total pressure is $500 \ kPa$.

Calculate K_p .

Show all your working.

Include units in your answer.

© OCR 2014 H432/01

۱.		nixture of $\rm N_2$ and $\rm O_2$ gases has a total pressure of 1.42 atm. e mole fraction of $\rm N_2$ is 0.700.	
	Wh	at is the partial pressure, in atm, of O ₂ in the mixture?	
	Α	0.211	
	В	0.426	
	С	0.493	
	D	0.994	
	Υοι	ur answer	[1]

- **5.** This question is about free energy changes, ΔG , enthalpy changes, ΔH , and temperature, T.
 - (a) The Gibbs' equation is shown below.

$$\Delta G = \Delta H - T \Delta S$$

A chemist investigates a reaction to determine how ΔG varies with T. The results are shown in **Fig. 18.1**.

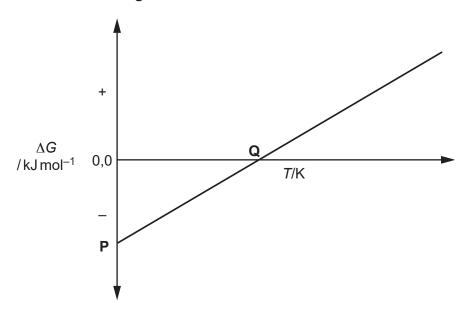


Fig. 18.1

What is significant about the gradient of the line and the values P and Q shown in Fig. 18.1 ? Explain your reasoning.
[4]

(b)	Iron can be extracted from its ore Fe ₃ O ₄ using carbon.
	Several equilibria are involved including equilibrium 18.1, shown below.

equilibrium 18.1
$$Fe_3O_4(s) + 4C(s) \implies 3Fe(s) + 4CO(g)$$
 $\Delta H = +676.4 \text{ kJ mol}^{-1}$ $\Delta S = +703.1 \text{ J K}^{-1} \text{ mol}^{-1}$

- Why is **equilibrium 18.1** a *heterogeneous* equilibrium?
- (ii) Write the expression for K_p for equilibrium 18.1.

[1]

- (iii) The forward reaction in equilibrium 18.1 is only feasible at high temperatures.
 - Show that the forward reaction is **not** feasible at 25 °C.
 - Calculate the minimum temperature, in K, for the forward reaction to be feasible.

minimum temperature = K [3]

© OCR 2017 Turn over

(iv) Another equilibrium involved in the extraction of iron from ${\rm Fe_3O_4}$ is shown below.

$$\text{Fe}_3\text{O}_4(\text{s}) + 4\text{CO}(\text{g}) \implies 3\text{Fe}(\text{s}) + 4\text{CO}_2(\text{g})$$
 $\Delta H = -13.5\,\text{kJ}\,\text{mol}^{-1}$

Enthalpy changes of formation, $\Delta_{\rm f}H$, for ${\rm Fe_3O_4(s)}$ and ${\rm CO_2(g)}$ are shown in the table.

Compound	Δ _f H / kJ mol ^{−1}
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_{\!f} H,$ for CO(g).

$$\Delta_{\rm f} H$$
, for CO(g) =kJ mol⁻¹ [3]

- **6.** This question is about equilibrium reactions.
 - (a) Hydrogen gas is manufactured by the chemical industry using the reaction of methane and steam. This is a reversible reaction, shown in **equilibrium 20.1** below.

equilibrium 20.1	$CH_4(g) + H_2O(g) \rightleftharpoons$	$3H_2(g) + CO(g)$	$\Delta H = +210 \mathrm{kJ} \mathrm{mol}^{-1}$
•	f hydrogen from equil	ibrium 20.1, and expl	essure and temperature ain why the operational

.....[4]

(b) A chemist investigates the equilibrium reaction between sulfur dioxide, oxygen, and sulfur trioxide, shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

- The chemist mixes together SO₂ and O₂ with a catalyst.
- The chemist compresses the gas mixture to a volume of 400 cm³.
- The mixture is heated to a constant temperature and is allowed to reach equilibrium without changing the total gas volume.

The equilibrium mixture contains $0.0540\,\mathrm{mol}~\mathrm{SO}_2$ and $0.0270\,\mathrm{mol}~\mathrm{O}_2$.

At the temperature used, the numerical value for K_c is $3.045 \times 10^4 \,\mathrm{dm}^3 \,\mathrm{mol}^{-1}$.

(i) Write the expression for K_c and the units of K_c for this equilibrium.

[2]

(ii) Determine the amount, in mol, of SO₃ in the equilibrium mixture at this temperature.

Give your final answer to an **appropriate** number of significant figures.

Show all your working.

© OCR 2017 Turn over

- 7. This question is about reactions of hydrogen peroxide, H_2O_2 .
 - (a) Hydrogen peroxide, H_2O_2 , iodide ions, I^- , and acid, H^+ , react as shown in the equation below.

$$\mathrm{H_2O_2(aq)} \ + \ 2\mathrm{I^-(aq)} \ + \ 2\mathrm{H^+(aq)} \ \rightarrow \ \mathrm{I_2(aq)} \ + \ 2\mathrm{H_2O(I)}$$

A student carries out several experiments at the same temperature, using the initial rates method, to determine the rate constant, k, for this reaction.

The results are shown below.

	lni	Poto		
Experiment	[H ₂ O ₂ (aq)] /moldm ⁻³	[I ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	Rate /10 ⁻⁶ mol dm ⁻³ s ⁻¹
1	0.0100	0.0100	0.100	2.00
2	0.0100	0.0200	0.100	4.00
3	0.0200	0.0100	0.100	4.00
4	0.0200	0.0100	0.200	4.00

(i) Determine the rate equation and calculate the rate constant, k, including units.

		<i>κ</i> =		uni	IS		[3]
(ii)	The rate constant, <i>k</i> , for this reaction is dete	ermin	ed at diffe	ent temp	peratur	es, T.	
	Explain how the student could determine graphically using values of k and T .				u		

© OCR 2017 Turn over

(b) Solutions of hydrogen peroxide decompose slowly into water and oxygen:

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

This reaction is catalysed by manganese dioxide, MnO₂(s).

Standard electrode potentials are shown below.

$$O_2(g) + 2H^+(aq) + 2e^- \implies H_2O_2(aq)$$
 $E^e = +0.70 \text{ V}$

$$MnO_2(s) + 4H^+(aq) + 2e^- \implies Mn^{2+}(aq) + 2H_2O(l) \quad E^e = +1.51 V$$

$$H_2O_2(g) + 2H^+(aq) + 2e^- \implies 2H_2O(l)$$
 $E^{\theta} = +1.78V$

Using the electrode potentials, explain how ${\rm MnO_2}$ is able to act as a catalyst for the decomposition of hydrogen peroxide.

ou answer should include relevant equations.
F.A.

(c)	Peroxycarboxylic acids a	are organic co	mpounds with the	e COOOH functional gro	up.
-----	--------------------------	----------------	------------------	------------------------	-----

Peroxyethanoic acid, CH₃COOOH, is used as a disinfectant.

(i) Suggest the structure for CH₃COOOH.

The COOOH functional group must be clearly displayed.

[1]

(ii) Peroxyethanoic acid can be prepared by reacting hydrogen peroxide with ethanoic acid. This is a heterogeneous equilibrium.

$$H_2O_2(aq) + CH_3COOH(aq) \rightleftharpoons CH_3COOOH(aq) + H_2O(I)$$
 $K_c = 0.37 \, dm^3 mol^{-1}$

A 250 cm 3 equilibrium mixture contains concentrations of 0.500 mol dm $^{-3}$ $\rm H_2O_2(aq)$ and 0.500 mol dm $^{-3}$ $\rm CH_3COOH(aq)$.

Calculate the amount, in mol, of peroxyethanoic acid in the equilibrium mixture.

amount = mol [3]

© OCR 2017 Turn over

PhysicsAndMathsTutor.com

8. The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

An equilibrium mixture contains 2.4 mol ${\rm SO_2}$, 1.2 mol ${\rm O_2}$ and 0.4 mol ${\rm SO_3}$. The total pressure is 250 atm.

What is the partial pressure of SO₃?

- A 15 atm
- B 25atm
- **C** 100 atm
- **D** 200 atm

Your answer [1]

© OCR 2018 Turn over

9.	Nitrogen monoxide, NO, and oxygen,	O ₂ ,	, react to form	nitrogen	dioxide,	NO_2	in the	reversible
	reaction shown in equilibrium 18.1 .	_				_		

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$
 Equilibrium 18.1

(a) Write an expression for $K_{\rm c}$ for this equilibrium and state the units.

$$K_{\rm c} =$$

- **(b)** A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total gas volume is 4.0 dm³.
 - The mixture is allowed to reach equilibrium at constant temperature and volume.
 - The equilibrium mixture contains 0.40 mol NO and 0.80 mol O₂.
 - Under these conditions, the numerical value of K_c is 45.

Calculate the amount, in mol, of NO_2 in the equilibrium mixture.

(c) The values of $K_{\rm p}$ for equilibrium 18.1 at 298 K and 1000 K are shown below.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Equilibrium 18.1

Temperature/K	K _p /atm ^{−1}
298	$K_{\rm p} = 2.19 \times 10^{12}$
1000	$K_{\rm p} = 2.03 \times 10^{-1}$

(i)	Predict, with a reason, whether the forward reaction is exothermic or endothermic.
(ii)	The chemist increases the pressure of the equilibrium mixture at the same temperature
	State, and explain in terms of $K_{\rm p}$, how you would expect the equilibrium position to change.
	[3

- **10.** A student carries out two experiments in the laboratory based on succinic acid (butanedioic acid), (CH₂COOH)₂.
 - (a) Aqueous succinic acid can be neutralised by aqueous sodium hydroxide, NaOH(aq):

$$(CH_2COOH)_2(aq) + 2NaOH(aq) \rightarrow (CH_2COONa)_2(aq) + 2H_2O(I)$$

This reaction can be used to determine a value for the enthalpy change of neutralisation, $\Delta_{\text{neut}}H$.

The student follows this method:

- Add 50.0 cm³ of 0.400 mol dm⁻³ succinic acid to a polystyrene cup.
- Measure out 50.0 cm³ of 1.00 mol dm⁻³ NaOH(aq), which is in excess.
- Measure the temperature of both solutions.
- Add the NaOH(aq) to the aqueous succinic acid in the polystyrene cup, stir the mixture, and record the maximum temperature.

Temperature readings

Maximum temperature of mixture/°C	26.5
Initial temperature of both solutions/°C	21.5

Calculate a value for the enthalpy change of neutralisation, $\Delta_{\text{neut}}H$, in kJ mol⁻¹.

Assume that the density of all solutions and the specific heat capacity, c, of the reaction mixture are the same as for water.

$$\Delta_{\text{neut}}H = \dots kJ \,\text{mol}^{-1} \,[4]$$

(b) Succinic acid is esterified by ethanol, C₂H₅OH, in the presence of an acid catalyst to form an equilibrium mixture.

The equilibrium constant, K_c , for this equilibrium can be calculated using the amounts, in moles, of the components in the equilibrium mixture, using **expression 5.1**.

$$K_{c} = \frac{n((CH_{2}COOC_{2}H_{5})_{2}) \times n(H_{2}O)^{2}}{n((CH_{2}COOH)_{2}) \times n(C_{2}H_{5}OH)^{2}}$$
 Expression 5.1

A student carries out an experiment to determine the value of $K_{\rm c}$ for this equilibrium.

- The student mixes together 0.0500 mol of succinic acid and 0.150 mol of ethanol, with a small amount of an acid catalyst.
- The mixture is allowed to reach equilibrium.
- The student determines that 0.0200 mol of succinic acid are present in the equilibrium mixture.

(i)	Which technique could be used to determine the equilibrium amount of succinic acid?
	[1]
(ii)	Write the equation for the equilibrium reaction that takes place.
	[1]
(iii)	Draw the skeletal formula of the ester present in the equilibrium mixture.
	[1]
(!\	
(iv)	$K_{\rm c}$ is the equilibrium constant in terms of equilibrium concentrations.
	Why can expression 5.1 be used to calculate $K_{\rm c}$ for this equilibrium?
	[1]
(v)	Calculate the value of K_c for this reaction.
	Show your working.

11.	Sulfuric	acid	is	an	important	chemical	used	to	make	detergents,	fertilisers	and	dyes.	It	is
	manufac	ctured	in	a m	nulti-step pr	ocess.									

(i)	Explain why the enth				_	
	Use ideas about enth	naipy change	es associate	ed with bond	breaking and	bond making
<i>(</i> 11)						
(ii)	Some standard entro	T			Н О(I)	
	S ^e /JK ⁻¹ mol ⁻¹	H ₂ S(g) 206	O ₂ (g) 205	SO ₂ (g)	H ₂ O(I)	
	Using calculations, e Calculations	Apiairi Wrietii	e Neactio	II I IS ICASID	ie at 20°C.	

Explanation for feasible or non feasible	
	[4]

(iii) Calculate the standard enthalpy change of formation, $\Delta_{\mathbf{f}}H^{\theta}$, of hydrogen sulfide using the enthalpy change for **Reaction 1**, and the standard enthalpy changes of combustion below.

Substance	∆ _c H ^e /kJ mol ^{−1}
S(s)	-296.8
H ₂ (g)	-285.8

$$2H_2S(g) + 3O_2(g) \rightarrow 2SO_2(g) + 2H_2O(l)$$
 $\Delta_r H = -1125 \text{ kJ mol}^{-1}$ Reaction 1

$$\Delta_{\rm f} H^{\rm e}$$
 of hydrogen sulfide = kJ mol⁻¹ [3]

(b)	The second	step in the	manufacture	of	sulfuric	acid	is	the	conversion	of	SO ₂	into	sulfu
	trioxide, SO ₃	, using Equi	librium 1.								_		

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

$$\Delta H = -197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Equilibrium 1

An industrial chemist carries out some research into **Equilibrium 1**.

- The chemist fills a $10.2\,\mathrm{dm^3}$ container with $\mathrm{SO_2}(g)$ at RTP, and then adds $12.0\,\mathrm{g}$ of $\mathrm{O_2}(g)$.
- The chemist adds the vanadium(V) oxide catalyst, and heats the mixture. The mixture is allowed to reach equilibrium at a pressure of 2.50 atm and a temperature of 1000 K.
- A sample of the equilibrium mixture is analysed, and found to contain 0.350 mol of SO₃.
- (i) Write an expression for $K_{\rm p}$ for Equilibrium 1.

Include the units.

Determine the value of K_p for **Equilibrium 1** at 1000 K.

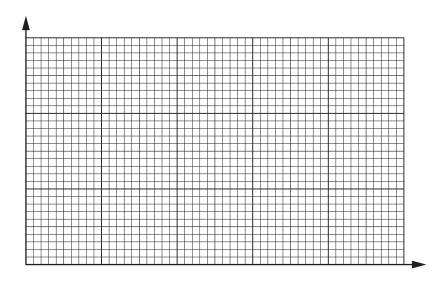
Show all your working.

Give your answer to 3 significant figures.

(iii)	The chemist repeats the experiment in (b) at a different temperature.
	The chemist finds that the value of K_p is greater than the answer to (b)(ii) .
	Explain whether the temperature in the second experiment is higher or lower than $1000\mathrm{K}.$
	[2]
(iv)	Explain the significance of the expression: $K_{\rm p}\gg 1$.
	[1]

(c) Vanadium(V) oxide, $V_2O_5(s)$, is used as a catalyst in **equilibrium 1**.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$


$$\Delta H = -197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Equilibrium 1

(i) Explain how the presence of $V_2O_5(s)$ increases the rate of reaction.

Include a labelled sketch of the Boltzmann distribution, on the grid below.

Label the axes.

F 43	
[4]	

Explain whether vanadium(V) oxide is acting as a homogeneous or heterogeneous (ii) catalyst.

12. The reversible reaction of nitrogen and hydrogen to form ammonia is shown below.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

In the equilibrium mixture, the partial pressure of $\rm N_2$ is 18.75 MPa and the partial pressure of $\rm H_2$ is 2.50 MPa.

The total pressure is 25 MPa.

What is the value of $K_{\rm p}$, in MPa⁻²?

- **A** 1.2×10^{-4}
- **B** 0.048
- **C** 0.075
- **D** 21

Your answer	[1]
-------------	-----

[2]

OCR (A) Chemistry A-Level - How Far

13.	Methanol, CH ₃ OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as
	shown in equilibrium 1 .

CO	$(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	$\Delta H = -91 \mathrm{kJ} \mathrm{mol}^{-1}$	Equilibrium 1
(a)	Predict the conditions of pressure yield of CH ₃ OH in equilibrium 1 .	and temperature that would	d give the maximum equilibrium
	Explain your answer.		
			[3]
(b)	A catalyst is used in the production	n of methanol in equilibriu i	n 1.
	State two ways that the use of camore sustainable and less harmfu		panies to make their processes
	1		
	2		

(c) Standard entropy values are given below.

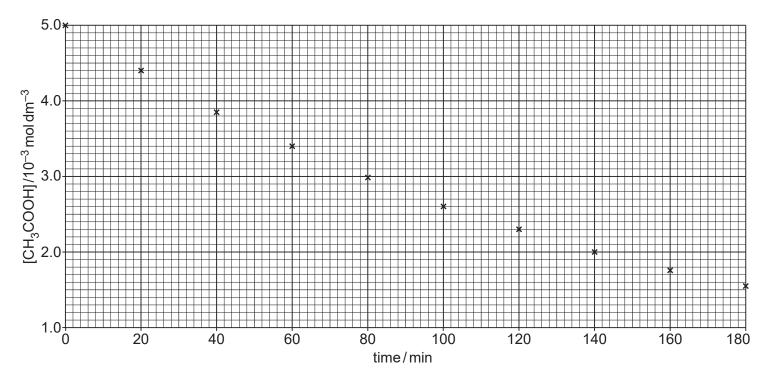
Substance	CO(g)	H ₂ (g)	CH ₃ OH(g)
S ^e /JK ⁻¹ mol ⁻¹	198	131	238

A chemist proposed producing methanol at 525 K using equilibrium 1 .
Explain, with a calculation, whether the production of methanol is feasible at 525 K.
[5]
At 298 K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is $-2.48 \times 10^4 \mathrm{J} \mathrm{mol}^{-1}$.
ΔG is linked to K_p by the relationship: $\Delta G = -RT \ln K_p$.
R = gas constant T = temperature in K.
Calculate $K_{\rm p}$ for equilibrium 1 at 298 K.
Give your answer to 3 significant figures.

$$K_{p} =$$
 units [3]

(d)

14. A student investigates the reaction between ethanoic acid, CH₃COOH(I) and methanol, CH₃OH(I), in the presence of an acid catalyst. The equation is shown below.


$$CH_3COOH(I) + CH_3OH(I) \rightleftharpoons CH_3COOCH_3(I) + H_2O(I)$$

(a) The student carries out an experiment to determine the order of reaction with respect to CH₃COOH.

The student uses a large excess of CH₃OH. The temperature is kept constant throughout the experiment.

The student takes a sample from the mixture every 20 minutes, and then determines the concentration of the ethanoic acid in each sample.

From the experimental results, the student plots the graph below.

(i)	Explain why the student uses a large excess of methanol in this experiment.	

(ii)	Use the half-life of this reaction to show that the reaction is first order with respect to $\mathrm{CH_3COOH}.$
	Show your working on the graph and below.
	[2]
(iii)	Determine the initial rate of reaction.
	initial rate = mol dm ⁻³ min ⁻¹ [2]

(b) The student carries out a second experiment to determine the value of K_c for this reaction. The student mixes 9.6 g of CH₃OH with 12.0 g of CH₃COOH and adds the acid catalyst. When the mixture reaches equilibrium, 0.030 mol of CH₃COOH remains. Calculate K_c for this equilibrium.

$$K_{c}$$
 =[4]